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We demonstrate a method to design nonresonant acoustic composite metamaterials made of periodic ar-
rangements of highly subwavelength unit cells composed of one or more inclusions embedded in a fluid. The
inclusion geometry determines the degree of anisotropy and effective material parameters, and its nonresonant
nature makes it suitable for large bandwidth applications. To characterize the resulting acoustic metamaterial,
two sets of normal incidence plane wave reflection and transmission simulations on thin samples are per-
formed. Applying this method, we show that samples as thin as one unit cell in the propagation direction are
sufficient to characterize the composite. Different simple unit cell geometries were considered in order to
bound the achievable material parameters of such composites. The large range of obtainable parameters,
including strong anisotropy, makes this approach suitable for creating the materials needed for applications of
transformation acoustics. As an example, we illustrate our method by designing and simulating a physically
realizable implementation of a beam-bending flat lens that theoretically requires complex inhomogeneous
materials not easily available in nature.
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I. INTRODUCTION

Exotic acoustic device concepts, such as the acoustic scat-
tering reducing coatings, i.e., “cloaks of silence,”1–5 lead re-
cently to increased interest in the development of engineered
acoustic composite metamaterials that can expand the range
of responses to acoustic excitation available in natural mate-
rials. Negative bulk and Poisson modulii, as well as negative
mass densities, have been shown to exist in resonant
composites.6–9 Their resonant behavior, however, implies a
narrow frequency band of operation, which limits the appli-
cations of such composites.

In many applications, however, negative effective param-
eters are not required and broadband solutions are possible.
For example, alternating layers of very thin materials4,10

have been shown to approximate the inhomogeneous and
anisotropic profiles required to obtain the above mentioned
acoustic cloaking shell. Perforating the thin shells to create
arrays of thin plates11 also can yield the needed anisotropic
effective mass density with a structure that is potentially sim-
pler to fabricate. The generality of transformation
acoustics,2,12 through which coordinate transformations on
acoustic fields can be realized with suitably designed com-
plex acoustic materials, creates the possibility of many inter-
esting applications if the hierarchical electromagnetic
metamaterial design approach, from unit cells to arrays of
cells,13,19 can be replicated for acoustic metamaterials.

Here, we build on this past work to extend a proven
simulation-based design approach for electromagnetic
metamaterials13 to nonresonant acoustic metamaterials. Our
acoustic metamaterial is assumed to be made of subwave-
length unit cells containing one or more inclusions. There is
an extensive literature on the homogenization of such com-
posite acoustic materials �see, for example, Refs. 14–18 for a
short list�. Our aim here is to demonstrate a numerical ap-
proach capable of handling arbitrarily complex composites
for obtaining the nonlocal effective properties that describe
how a wave interacts with and propagates through such a

material. Section II demonstrates the approach with a simple
example, while Sec. III shows that the effective parameters
extracted with our approach can be used to design a compos-
ite that interacts with an incident wave essentially exactly
how a prescribed continuous material would.

For simplicity, we illustrate our method in a two-
dimensional space, however, our analysis can be extended
with identical conclusions to three-dimensional structures.

II. DESIGN AND CHARACTERIZATION OF COMPOSITE
METAMATERIALS

Consider an inviscid fluid having zero shear modulus. An
acoustic wave propagating inside such a medium is governed
by the conservation of momentum and mass equations,
which, for small perturbations, can be written �we assume an
exp�j�t� time dependence�

�p + j��� �r��0v = 0

j�p + B�r�B0 � · v = 0, �1�

where p is the pressure, v is the fluid velocity, B is the bulk
modulus relative to B0, and �� is the generalized density
tensor16 whose components are relative to �0. For illustration
purposes, we assume that B0 and �0 are the parameters of air,
i.e., B0=141 kPa and �0=1.29 kg /m3.

We consider composite media that have the general struc-
ture presented in Fig. 1�a�. They are made of periodic arrays
of unit cells, each cell composed of one or more inclusions
positioned inside a background fluid. It is common to treat
these media as homogeneous materials characterized by ef-
fective material parameters, Beff and �� eff, as long as the unit
cell dimensions are highly subwavelength. We assume, with-
out loss of generality, that the mass density tensor16 has zero
off-diagonal terms, since any tensor can be diagonalized by a
suitable rotation of the coordinate system. Our analysis is
done in a two-dimensional space with inclusions whose sym-
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metry axes are aligned with the coordinate directions. Con-
sequently, two components of the density tensor, �eff

x and �eff
y ,

are needed to specify our materials.
Such composites can be analyzed theoretically, for ex-

ample, in the quasistatic approximation using relations simi-
lar to the Clausius-Mosotti equation for electromagnetic
mixed media.20 However, the effective acoustic material pa-
rameters can be obtained in numerical simulations, without
any approximations, using a method adapted from
electromagnetics13,21 and based on the fact that the wave
equations and boundary conditions are similar for acoustics
and electromagnetics, as pointed out in Ref. 1. The details of
this method applied in the acoustics case can be found in
Ref. 22. More specifically, acoustic plane waves are sent
normally incident on a composite slab of finite thickness in
the propagation direction and infinite extent in the transverse
direction, and the reflection and transmission coefficients are
recorded. These coefficients are inverted in order to obtain
the effective modulus, Beff, and the component of the density
tensor in the direction of propagation. Since, in our case, the
density tensor contains two nonzero components, we need
two sets of measurements to determine both of them.

Figure 1�b� shows the simulation domain used to numeri-
cally retrieve Beff and �eff

x . As the composite under test is
made of arrays of unit cells, its thickness can only be an
integer multiple of the unit cell dimension. For simplicity the
cell is a square having edge a, and contains one rectangular
piece of steel of length l and width w. The background fluid
is assumed to be air. The parameters of steel relative to those
of air are B=8�105 and �=6131. Notice that our inclusions
are solids in which pressure waves are usually described by
elastodynamic equations more complex than Eq. �1�. How-
ever, these inclusions are much smaller than the wavelength,
they do not fill the whole section of the unit cell, and there is
a large contrast between their material parameters and those
of air, so that the overall behavior of the composite is that of
a fluid and not of a solid.

For illustration purposes, the medium pictured in Fig. 1�b�
contains two cells in the propagation direction, however, we
will show shortly that samples as thin as one cell are enough

in order to characterize a bulk medium. We chose a=1 cm,
l=0.9a, and w=0.5a. In order to simulate infinite extent in
the direction perpendicular to the propagation direction, rigid
walls are used on the top and bottom of the simulation do-
main. Perfectly matched layers border the left and right
boundaries. A pressure plane wave propagating in the x di-
rection from left to right is normally incident on the sample,
and the reflected and transmitted waves are computed using
the commercial package COMSOL Multiphysics. Figure 2�a�
shows the computed pressure fields inside and around the
sample. These fields are used to calculate the reflection and
transmission coefficients relative to the sample boundaries,
which in turn are needed to calculate Beff and �eff

x .22

A similar procedure is used to retrieve the other density
component, �eff

y : this time, the incident plane wave propa-
gates in the y direction through a thin sample of the bulk
composite, as depicted in Fig. 1�c�. As before, the sample is
two unit cells in the propagation direction and has infinite
extent in the transverse direction. The pressure fields com-
puted in this case are presented in Fig. 2�b�.

Figure 3 shows the retrieved effective material parameters
for both these simulations as a function of wavelength inside
the background fluid, �bk, expressed as a multiple of the unit
cell diameter. The retrieved material parameters are generally
constant with the wavelength, as expected. Thus, we obtain
almost constant effective material parameters over a large
band of frequencies, from 0 Hz to roughly vbk / �10a�
=3430 Hz, where vbk=343 m /s is the speed of sound in the
background fluid �i.e., air�. The practical implication of this
observation is that we can increase the bandwidth of the
composite metamaterial simply by scaling down the geom-
etry of the unit cell. This contrasts with the behavior of reso-
nant metamaterials, for which geometry scalings do not af-
fect their bandwidth, but controls their narrowband working
frequency.

For wavelengths comparable to the unit cell diameter, the
homogenization theory that allows to associate effective ma-
terial parameters to the composite material loses its effective-
ness and the medium starts to behave more like a sonic
crystal23 than a homogeneous material. As a consequence,
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FIG. 1. Simulation setup used to analyze a bulk composite me-
dium. �a� The composite medium is made of array of unit cells that
contain one or more inclusions; �b� simulation setup used to retrieve
the effective material parameters Beff and �eff

x . Rigid walls are used
to simulate infinite medium in the transverse direction. The simula-
tion domain is terminated with reflectionless perfect matched layers
�PMLs�; �c� simulation setup used to obtain the effective material
parameters Beff and �eff

y .
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FIG. 2. �Color online� Pressure field of a wave propagating at a
frequency for which the background fluid wavelength is an order of
magnitude bigger than the unit cell dimension �i.e., �bk=10 cm�.
Notice that the fields are almost invariable in the transverse direc-
tion. �a� Fields used to recover Beff and �eff

x ; �b� fields used to
recover Beff and �eff

y .
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the retrieved material parameters start having a significant
variation with the wavelength. It is worth noting that there
are three wavelengths that need to be considered. The first is
the wavelength inside the background fluid, �bk, the other
two are the wavelengths inside the homogenized composite
medium for each direction of propagation shown in Figs.
1�b� and 1�c�, �cm

x and �cm
y , respectively. We note that for our

particular composite �cm
x ��cm

y /2 for large �bk’s, and, as a
result, �eff

x becomes significantly dependent on frequency at a
larger �bk. Another consequence of this variation with wave-
length is the difference between the retrieved values of the
bulk modulus, which should ideally be equal, for waves
propagating in the x and y directions, as depicted in Fig.
3�b�. Thus, for �cm

x ��cm
y /2��bk /2=5a �recall that a is the

cell dimension�, the difference between the retrieved bulk
modulii is approximately 20%. We expect this discrepancy to
be small enough for most applications, so that, in general, the
composite can be considered homogeneous for
min��bk,�cm

x ,�cm
y ��5a. Exceptions to this rule of thumb ex-

ist, as we will see shortly. Figure 2 shows that, as expected,
for the border case of �cm

x �5a, the pressure fields are still
approximately invariant in the transverse direction.

In the above analysis, the effective material parameters
were retrieved from simulations in which the composite

sample has two unit cells in the propagation direction. One
may wonder whether two cells are sufficient to characterize a
bulk composite. Figure 3 shows the retrieved material pa-
rameters if 1 through 4 cells are used in the simulation. As
we can see, the results are virtually identical, which means
that as few as one cell in the propagation direction is enough
to obtain the effective material parameters of the bulk mate-
rial depicted in Fig. 1�a�.

Figure 3 illustrates a key characteristic of this type of cell,
namely, the effective mass density anisotropy produced by
the geometry of the inclusion. The physics of this phenom-
enon is straightforward: for one direction of propagation, the
size of the inclusion fills more of the transverse dimension of
the unit cell compared to the other direction, i.e., l�w. Con-
sequently, the corresponding density component, �eff

x , be-
comes greater than �eff

y , because in the former case, the pres-
sure wave propagates mostly through the more dense
inclusion.

Figure 4 shows how the geometry of the inclusion con-
trols the effective material parameters of the metamaterial.
Thus, we vary l and keep w=0.5a and �bk=1000a �i.e., �bk
→�� constant. We notice the strong variation of �eff

x , while
the other two parameters remain almost unchanged, which
demonstrates that l mainly controls �eff

x and has little influ-
ence on �eff

y and Beff. Similarly, from considerations of sym-
metry, it follows that w determines the value of �eff

y . The
exponentional increase of �eff

x with l agrees with the conclu-
sions of Ref. 15, which predicts that �eff

x is the arithmetic
average between the densities of the inclusion and cell back-
ground in the limit l=a.

The bulk modulus matches Wood’s formula14 very well at
these large wavelengths. More specifically, the effective bulk
modulus is found to be the harmonic average of the bulk
modulii of the cell components. As a consequence, the bulk
modulus is, as expected, independent on the wave direction
in the limit of low frequencies.

These observations allow us to design composite materi-
als with effective material parameters having a large range of
values. We saw previously how large values of �eff can be
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FIG. 3. �Color online� Effective material parameters �top: mass
density; bottom: bulk modulus� obtained for media having 1
�dashed�, 2 �solid�, 3 �dashed-dotted�, and 4 �dotted� unit cells in the
propagation direction. Regardless of the slab thickness, the ex-
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dominate and the effective material parameters become dependent
of frequency.
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obtained using high density particles. In the same way sub-
unity values of �eff can be achieved if the dense inclusions
are replaced by materials with densities lower than that of the
background fluid. For instance, if the background fluid is air,
one can obtain relative density values as low as 0.2 by using
inclusions made of helium. If the background fluid is water,
the range of available effective bulk modulii is large, but the
upper range of effective densities is much reduced because
the water density is generally only an order of magnitude
smaller than that of most rigid solids.

III. DESIGN OF AN ACOUSTIC BEAM-BENDING LENS

To demonstrate the efficacy of our method to devise
acoustic composites, we employ it in order to design a flat,
isotropic metamaterial lens of thickness t=0.3� and length
L=2� capable of bending a normally incident wave propa-
gating in air in the x direction by an angle � �see Fig. 5�a��.
The wavelength in air is �. Since the lens has a finite size in
the transverse direction, we assume the incident wave to be a
Gaussian beam whose amplitude in the plane situated 1.5�
behind the lens is given by pinc�x=0,y�=exp�−2�y−��2�. We
start our design by specifying the ideal material parameters
we wish to obtain inside the lens.

According to diffraction theory, one way to achieve the
desired lens behavior is to set the wavenumber inside the
lens material, k, to have a linear variation with the transverse
direction y, and to be invariant in the propagation direction x.
This constraint requires the acoustic refractive index, defined
as n�k /k0=�� /B �where k0 is the wave number in air, and

as before, B and � are relative to the parameters of air�, to
have the following expression:

n�x,y� = 1 +
nmax − 1

L
y , �2�

where nmax is the maximum refractive index at the y=L end
of the lens. Assuming a Gaussian beam normally incident on
the lens, i.e., the phase is approximately constant on the first
lens-air interface, x=1.5�− t /2, the phase advance at the sec-
ond lens-air interface at x=1.5�+ t /2 is

��y� = − k0t�1 +
nmax − 1

L
y	 , �3�

which determines a bending angle of

� = arcsin
 t

L
�nmax − 1�� , �4�

Assuming nmax=2.85, a value relatively easy to obtain with
the composites described above, it follows that ��15°.

One choice of material parameters, B and �, easier to
realize using composite materials, and which result in the
refractive index profile given by Eq. �2�, are presented in Fig.
5�b� �see the solid curves�. Similar to n, both B and � vary
with the transverse coordinate y and are invariant with x.
Figure 6�a� shows the pressure fields inside and around the
theoretical lens having these material parameters, and were
obtained in a numerical simulation performed with COMSOL

Multiphysics. The simulation confirms the desired behavior
of the lens: the normally incident Gaussian beam is deflected
by approximately 15°. In order to cancel the reflections from
the boundaries of the computation domain, perfectly
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matched layers were placed around the domain �not shown�.
We also note the increased reflection of the incident beam
from the upper section of the lens �i.e., around y=L� com-
pared to that from the lower section around y=0. This effect
is caused by the variation in the lens impedance 	 �defined as
	���B� with y: 	 is closer to the impedance of air at the
lower end of the lens and bigger at the upper end.

Once we determined the required material parameters, we
design an acoustic composite metamaterial that best approxi-
mates these parameters. First, we discretize the continuous
profiles of � and B, or, equivalently, approximate the theo-
retical continuous lens medium using layers of homogeneous
materials that have � and B specified by the dots in Fig. 5�b�.
We choose each layer to be 0.1� in the transverse direction,
y, and, since the desired material parameters are invariant in
the x direction, each layer spans the entire lens width of t
=0.3�. Each one of these 20 resulting layers are physically
implemented using acoustic composites made of unit cells
that follow the template presented in the inset of Fig. 5�c�.
More specifically, each unit cell is a square having an edge of
a=0.1�, and contains a single steel particle whose symmetry
makes the cell isotropic. By modifying the values of s1 and
s2, we tune the material parameters of the composite gener-
ated by the unit cell. Thus, in virtue of Fig. 4, by increasing
s1 and s2 we increase the value of �, while only very slightly
increase the value of B. Figure 5�d� presents the values of s1
and s2 needed to obtain the discretized material parameters
shown as dots in Fig. 5�b�. The width of the segments that
compose each steel particle is constant, w=0.005�.

Figure 6�b� presents the fields generated by the Gaussian
beam incident on the physical lens made of acoustic compos-
ites, while Fig. 5�c� shows a close up of the lens structure. A
comparison between Figs. 6�a� and 6�b� shows that the field
distribution outside, and more importantly, inside the physi-
cal lens matches very well the fields generated in the pres-
ence of the theoretical lens made of the hypothetical continu-
ous material. The good agreement demonstrates that the
composite lens made of discrete steel particles behaves al-
most identically to the continuous material lens, which in
turn validates the composite design methodology presented
here. It is worth pointing out that in the upper part of the lens
the homogenization theory that allows us to attach effective
material properties to the metamaterial structure holds, even
though the wavelength inside the metamaterial composite be-
comes �cm�3.5a, as demonstrated by the almost identical
behavior of the theoretical lens and its metamaterial imple-
mentation.

We saw for the simple design of Sec. II that the analysis
of one cell in the propagation direction was enough to char-
acterize the bulk metamaterial. We verified this conclusion
for the more complicated and realistic cell used in this sec-
tion. For this purpose, we simulated a metamaterial lens that
had the same structure in the transverse direction as the lens
discussed above, but had only one layer in the propagation
direction. A comparison between the fields in the neighbor-
hood of this lens and the fields produced by the correspond-
ing continuous lens shows, as before, virtually identical be-
havior of the two devices.

IV. CONCLUSIONS

We presented and demonstrated a design methodology for
broadband, nonresonant acoustic composite metamaterials
made of arrays of unit cells composed of one or more inclu-
sions in a host fluid. By extracting the effective bulk param-
eters of unit cell arrays from numerical reflection and trans-
mission simulations of a single unit cell, we showed that
strong anisotropy of the effective mass density tensor can be
achieved and that the effective mass density components can
be independently controlled with a properly designed inclu-
sion geometry. The effective parameters can be reliably ex-
tracted from wave reflection and transmission on a slab as
thin as one unit cell, which shows that the behavior of a large
slab can be determined from either simulations or measure-
ments of a small sample. The effective bulk modulus and
mass density tensor of arrays of nonresonant unit cells are
nearly frequency-independent from dc to an upper frequency
determined by the size of the unit cell relative to the acoustic
wavelength in the metamaterial.

The entire design approach was demonstrated through the
design and simulation of a flat beam-bending acoustic lens.
Using efficient single unit cell simulations, we designed a
series of unit cells to approximate the acoustic properties of a
smoothly inhomogeneous acoustic lens. Complete simula-
tions of the smoothly inhomogeneous lens and of the struc-
tured metamaterial approximation confirm that the wave be-
havior outside and even inside each lens is essentially
identical. Thus, the metamaterial lens, which is straightfor-
ward to fabricate, performs just as the smoothly inhomoge-
neous lens. This approach can be applied to design the
acoustic composite metamaterials needed to realize a wide
range of devices derivable through transformation acoustics.
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